

ECMO beyond 2020: from resuscitation to controlled reperfusion

PD Dr. Georg Trummer

Conflict of Interest

Shareholder of ResuSciTec

Figure 1. Survival to Hospital Discharge after In-Hospital CPR, According to Year and Race.

Survival is poorer for black and other nonwhite patients (P<0.001). There is no significant change in overall survival from 1992 to 2005 (P=0.57 with the use of the likelihood-ratio test).

(Ehlenbach WJ et al. NEJM 2009; 361: 22-31)

Survival out-of-hospital-CPR

Survival 1-5 %

Neurologic intact survival < 1.5 %

(El-Menyar AA Chest 2005; 128: 2835-46)

Pathophysiology of inadequate hemodynamics during CPR

- Ischemic insult after cardiac arrest
- Low-flow state
 - coronary perfusion
 - cerebral perfusion
- Post-resuscitation syndrome
 - early inflammatory response ("sepsis like")
 - myocardial dysfunction
 - neurologic dysfunction

Dissertation Breuninger, Freiburg, 2012

Main reasons for poor prognosis in cardiac arrest patients

- Ischemia-reperfusion injury during cardiac arrest and CPR
- Lack of return of spontaneous circulation (ROSC)
- Re-arrest from hemodynamic instability after ROSC

Results after extracorporeal CPR using ECLS (eCPR)

Neurologic intact survival

12.3 %

Inverse relationship between survival and Collapse-to-ECLS interval

Nagao et al. Circ J 2010, Morimura et al. Resuscitation 2011

Reduce Ischemia/reperfusion to a sustainable extent

Garcia-Dorado et al, Cardiovasc Res. 2006

New Approach to CPR: <u>Controlled Automated Reperfusion</u> of the who<u>L</u>e body (CARL)

- Control of the conditions of reperfusion after cardiac arrest
- Control of the compositions of the initial reperfusate after cardiac arrest
- Automation of analysis of blood parameters to determine individual constituents of the reperfusate

Control of the conditions of reperfusion after cardiac arrest

Control of the conditions of reperfusion

- High perfusion pressure (> 80 mmHg)
- Pulsatile perfusion
- High Flow
- Immediate hypothermia
- Avoid inotropes

Control of the composition of the reperfusate after cardiac arrest

Control of the composition of the reperfusate

- Pharmacologic defibrillation by potassium (secondary cardioplegia)
- Immediate heparinization to counteract hypercoagulation after cardiac arrest
- Hyperosmolarity
- Control initial oxygen content
- Blood pH
- Prevention of cellular calcium overload

Automation of analysis of blood parameters to determine individual constituents of the reperfusate

Evaluation basis of the animal experiments

Mortality and neurological recovery during an observation period of 7 days

Forbess et al, Ann Thorac Surg. 1995

Animal experiments 20 minutes I

Investigated parameter Normothermia

N=11 2/11 good 9/11 unsatisfactory

Interpretation Normothermia in the reperfusion phase has adverse effects

Consequence Hypothermia should be part of the controlled reperfusion

Animal experiments 20 minutes II

Investigated parameter 100 % Oxygen application with CIRD

N=8 0/8 good 8/8 unsatisfactory

Interpretation

The application of 100% oxygen in the reperfusion phase is unfavorable

Consequence Oxygen should be applied cautiously and controlled

Animal experiments minutes III

Gruppe: 214

Investigated parameter Compensation of hyponatremia

N=7 4/7 good 3/7 unsatisfactory

Interpretation A correction of the sodium level during the reperfusion could have a favorable effect

Consequence Sodium application should be considered using a dosing system

Animal experiments 20 minutes IV

Group: 215

Investigated parameter Laminar blood flow

N=6 4/6 good 2/6 unsatisfactory

Interpretation

In the animal model (60 kg bw) satisfactory results could be achieved with a laminar blood flow. The power limit of the blood pump was however not attained.

Consequence

A sufficient blood flow must must be achieved for patients with higher body weight

Animal experiments 20 minutes V

Group: 211

"CIRD"

N=11 9/11 good 2/11 unsatisfactory

Interpretation

Obtaining and establishing a sytematic reperfusion technique with very good results with an ischemic time of 20 minutes

Consequence The implementation of all the individual elements in CIRD is useful

20 minutes circulatory arrest

Controlled Integrated Resuscitation Device (CIRD) (ResuSciTec GmbH)

CIRD 1.0 "First in Man" in 2014

Conclusions

- Neurologic intact survival after in- and out-ofhospital cardiac arrest is extremely poor.
- Controlled automated reperfusion of the whole body (CARL) is a promising new strategy after cardiac arrest.
- Clinical studies using controlled automated reperfusion of the whole body (CARL) have started
- Clinical partners are highly welcome to join in

